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CHAPTER 1

Introduction

A complete understanding of most chemical and biochemical processes of pharmaco-

logical interest, such as solvation and transport properties, protein-ligand binding, proton

and electron transfer reactions, etc., requires a careful examination of the free energy

difference between the initial and final states of the process under study. This thermody-

namic quantity is indeed a fundamental measure of the relative stability of different states

of a given system. In the case of a receptor-ligand complexation process, the absolute

binding free energy (ABFE) is of paramount importance to assess the affinity between

the two compounds. Strictly speaking, the ABFE can be expressed as the reversible

thermodynamic work to separate the ligand from the receptor into solution.

In the last two decades, in the context of atomistic molecular dynamics (MD) simula-

tions with explicit solvent, various computational techniques have been devised to com-

pute the ABFE with unprecedented accuracy, such as the double decoupling method [1],

potential of mean force [2], metadynamics [3–5] or generalized ensemble approaches like

the binding energy distribution analysis [6], the adaptive integration method [7] or the

energy driven undocking scheme [8]. All these methodologies bypass the sampling limita-

tions that are inherent to classical MD simulations in ligand-receptor systems by appro-

priately modifying the interaction potential and/or by invoking geometrical restraints so

as to force the binding/unbinding event in a simulation timescale typically in the order
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Introduction

of nanoseconds [9, 10].

In the so-called alchemical transformations [1,10–17], probably the most popular and

widely used [12–17] of these methods, the ligand, in two distinct thermodynamic processes,

is reversibly decoupled from the environment in the bulk solvent and in the binding site

of the solvated receptor. Reversible decoupling is implemented by discretizing the non-

physical alchemical path in a series of independent equilibrium simulations each with a

different Hamiltonian H(λi) with the ligand-environment coupling λi parameter varying

in small steps from λ = 1 to λ = 0 corresponding to the fully coupled and decoupled

(gas-phase) state of the ligand, respectively. In most of the variants of the reversible al-

chemical route, a geometrical restraint, whose spurious contribution to the ABFE may be

eliminated a posteriori, keeps the ligand in the binding site at intermediate values of the

λ coupling parameter. The overall free energies for the two decoupling processes are com-

puted by summing up the free energy differences relative to λ-neighboring Hamiltonians

using either thermodynamic integration [18] or the free energy perturbation [19] scheme

with the Bennett acceptance ratio [20]. The ABFE can be finally computed as the free

energy difference between the two decoupling processes [11] using a correction [1, 21, 22]

to account for the reversible work needed to bring the ligand volume from that imposed

in the MD simulation to that of the standard state. The alchemical procedure can be

merged with generalized ensemble approaches by letting λ hopping between neighboring

λ states so as to favour conformational sampling of the ligand [6, 15, 23,24].

A computer simulation requires a precisely defined model for the material of interest.

The adopted molecular model describes the forces acting between the molecules, and

defines the boundary conditions to be used. Actually, such a model describes interactions

between molecules making up the system and their environment, as well as intra- and

intermolecular interactions. A molecular potential energy function implicitly describes

the geometric shapes of individual molecules or, more precisely, their electron clouds.

Thus, when we specify the potential function, we establish the symmetry of molecules,

whether they are rigid or flexible, how many interaction sites each molecule contains,

where these sites are located, and so on. A detailed characterization of intermolecular

potential functions can be given analytically or numerically. In any case, a quantitative

form for the potential function defines the molecular model and hence it must be chosen

before performing the simulation. Detailed information on MD simulation techniques can

be found in the textbook [25].

In the present study, we apply MD simulation methods to compute ABFEs of sev-
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eral ligand-receptor complexes involving β-cyclodextrin as the receptor and simple aro-

matic compounds (benzene, naphthalene and anthracene) as the ligands. The aim is

twice. From one side, we investigate the capabilities of simulation approaches based on

alchemical transformations and nonequilibrium work theorems to quantitatively predict

the ABFEs, and hence the complexation equilibrium constants, of an important biochem-

ical target involved in several biological processes. On the other side, we aim to test the

simulation molecular model in general, and the GLYCAM [26] force field combined to our

parametrization of the atomic charges in particular, for being employed in forthcoming

computational studies addressed to ligands with pharmacological perspectives.

From the biomedical standpoint, complexes of cyclodextrins (CDs) have attracted

a large interest, especially for their pharmaceutical applications. Since inclusion com-

pounds of CDs with hydrophobic molecules are able to get into body tissues, they can

be used to release biologically active compounds under specific conditions. The ability

of CDs to alter physical, chemical and biological properties of guest molecules through

the formation of inclusion complexes in solution is the basis for their use as pharmaceu-

tical carriers of drugs, which are unstable at ambient conditions or poorly soluble into

water. Indeed, a drug substance should have a certain level of solubility to be readily

delivered to the cellular membrane, but it needs to be hydrophobic enough to cross the

membrane: one of the unique properties of CDs is indeed their ability to enhance drug

delivery through biological membranes. However, the inclusion complexes are important

not only for solubilization and transport. In some cases, CDs catalyse the reaction of a

guest molecule. Four species of CDs are known with rings including from 6 to 9 glucose

units: α-CD (6 units), β-CD (7 units) , λ-CD (8 units) and γ-CD (9 units). In particular,

β-CD consists of seven d-glucopyranose monomers covalently bound by α-1,4-linkages. A

ball-and-sticks representation of β-CD is shown in fig. 1.1. From a topological point of

view, this macrocycle can be described as a truncated cone, in which the narrow rim (6.4

Å) bears the primary hydroxy groups, whereas the wide rim (15.4 Å) bears the secondary

hydroxy groups. Since no hydroxy groups are present within the toroidal cavity of β-CD,

this zone has a pronounced hydrophobic character. This feature, together with van der

Waals forces and hydrogen bonding, allows β-CD to host small molecules efficiently in

aqueous solutions. No covalent bonds are formed or broken during the complex formation,

and drug molecules in the complex are in rapid equilibrium with free molecules in the

solution. The main driving force for the complex formation is the release of enthalpy due

to migration of water molecules outside the β-CD cavity. In fact, water molecules are
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Figure 1.1: β-cyclodextrin

replaced by more hydrophobic guest molecules present into solution to achieve an apolar

association and decrease of the β-CD ring strain resulting in a more stable lower energy

state. The binding of guest molecules within the host β-CD is not fixed or permanent,

but rather a dynamic equilibrium is established. Binding strength depends on how well

the host-guest complex fits together and on specific local interactions between surface

atoms. Complexes can be formed either in solution or in the crystalline state and water

is typically the solvent of choice.

Thanks to their wide use in pharmaceutical applications, there is an enormous amount

of studies about dynamical and thermodynamic properties of these kind of complexes with

a drug as ligand. Whether we study systems theoretically or experimentally, the general

procedure is the same: we manipulate and control certain observables (inputs), and then

we measure the system response (outputs). Within this framework, MD simulations pro-

vide one of the most direct ways to theoretically investigate molecular behaviors that are

not accessible to experimental approaches in complex systems, such as in the case of most

host-guest interactions. Given a system composed of atoms interacting with empirical

force fields, an MD simulation produces a dynamical trajectory by integrating Newton’s

equations of motion. Generally, a system of coupled second order non linear differen-

tial equations cannot be solved exactly; hence, an algorithm for numerical integration is

necessary. Making use of MD simulations, it is possible to determine the system equilib-

rium distribution, as a function of specific structural parameters (interatomic distances,

bending and dihedral angles, etc.). Considering the specific situation of a β-CD ligand

complexation process, bounded and unbounded states can be defined in terms of a proper
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coordinate. The evolution of an abstract coordinate may indeed represent the progress

along the pathway of the reaction of interest. Under such assumptions, the Potential of

Mean Force (PMF) represents a fundamental quantity in the calculation of ABFEs. The

PMF is basically the free energy landscape in the space of selected collective coordinates.

For example, if one defines the distance between two atoms as the collective coordinate,

the PMF is monodimensional and corresponds to the free energy as a function of the

separation between the atoms. In the present study, we choose the distance between the

centers of mass of β-CD and ligand as the collective coordinate in which the PMF is repre-

sented. Because of the peculiar symmetry of the problem, such a distance appears as the

most natural coordinate for representing the binding in β-CD complexes. By estimating

the PMF profile, it is possible to evaluate the difference of energy between bounded and

unbounded configurations. Unlikely, it is exactly this calculation, requiring an accurate

exploration of the whole configurational space, that results prohibitive through a direct

equilibrium sampling. This kind of numerical problem ultimately arises from the finite

power of computers, which limits the simulation time available to get a complete sampling

of the system.

A way to tackle this sampling problem is to resort to indirect strategies, based on

a decomposition of the ABFE into a series of free energy contributions, related to each

other through a thermodynamic cycle. In this respect, many physical processes, such as

ligand binding in complex biological systems or transfer of a molecule from one phase

to another, can be equivalently expressed as a sequence of intermediate transformations,

even of “imaginary” physical meaning, associated with free energy changes which can be

determined in an easier manner. The described strategy is the basis of the alchemical

approach designed according to a thermodynamic cycle within the framework of the so-

called Double Decoupling Method (DDM). DDM relies on “decoupling” the ligand from

its surrounding, or, equivalently, switching off all the interactions of the ligand with the

receptor and the solvent. So, in the first path of the cycle, the free energy change is as-

sociated with the turn-off of the intermolecular interactions involving the ligand located

in the binding site. Intermolecular terms of the potential energy are progressively annihi-

lated, nullifying the interactions of the ligand with receptor and solvent molecules. The

intramolecular potential, instead, is unchanged. To complete the cycle, two other paths

are necessary. The first consists into bringing the decoupled ligand from a configuration in

the solvent to the binding site of the receptor. As it will be shown below, the associated

free energy accounts for a geometrical change of the volume going from the solvent to
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the binding site, which can be evaluated without performing simulations. The last path

of the cycle is the activation of the ligand in the solvent, obtained by reintroducing the

ligand-solvent intermolecular potential. Actually, in this work the opposite process, i.e.

the ligand-solvent decoupling, will be simulated, whose free energy change differs only

for the sign. For each alchemical transformation, the free energy change is computed

by applying the Jarzynski equality, an almost recent relationship that relates free energy

differences between two states to the work distribution along an ensemble of trajecto-

ries joining these states. Combining the free energy changes associated with these three

paths allows to recover the standard ABFE of the complex. The described procedure is

implemented on complexes that, owing to their relative simplicity, can be considered as

benchmark compounds for binding of aromatic species, even if their practical impact in

drug design appears to be modest. In particular, we have investigated complexes of β-CD

with three ligands of different size, namely benzene, naphthalene and anthracene. This

choice has been made taking into account the similar geometrical properties of these aro-

matic molecules, considering that they only differ for one phenyl ring. Since ligands show

the same electronic structure and other features given by their aromatic nature, it will be

of some interest to analyse the role of the ligand dimensions in the binding strength.

The computational procedure for anthracene and naphthalene is identical, whereas

for benzene we have adopted a specific technique (called Umbrella Sampling) aimed at

enforcing the sampling of the bounded state of the complex. Indeed, during the simulation

of the benzene:β-CD complex, we have observed that, after a certain time, the ligand

leaves the binding site, resulting in a failure of sampling. For such a reason, we have

introduced an additional external potential to restrain the benzene inside the binding

cavity of β-CD, eventually ensuring an accurate sampling of the configurational space of

the bounded state. Each simulation has been realized using the MD simulation program

ORAC [27,28].

In order to assess the validity of the overall computational approach, we have com-

pared the results with experimental data reported in the literature. As a matter of fact,

the agreement with experimental data is mandatory to validate both method and force

field. Furthermore, it is worth noting that combining nonequilibrium alchemical trans-

formations with a constraining scheme for the ligand in the binding site represents an

original contribution in the examination of ligand-receptor systems of relevant biochemi-

cal interest.
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CHAPTER 2

Theory

In the present chapter a general description of statistical mechanics principles is re-

ported together with computational methods and procedures employed in this study.

First, a brief introduction to classical and statistical thermodynamics is reported focusing

on the milestone concepts of free energy and partition function. Then, we will enter in

the specific detail of statistical mechanics theory of non-covalent binding and alchemi-

cal transformations. Other adopted methodologies, such as umbrella sampling [29] and

nonequilibrium work theorems, will be discussed there where they are introduced. An

rather general overview of molecular dynamics simulations will also be presented.

2.1 Thermodynamics of the noncovalent binding

The theory of noncovalent binding association and the basic relationships for the

calculation of the ABFE through alchemical transformations has been reported by Gilson

and coworkers in Ref. [1]. Here, we review the Gilson’s results, preserving as much as

possible his notation. During the discussion, we will outline some difference with respect

to the Gilson’s outcomes, especially arising from the possible geometries of the ligand

related to its specific symmetry (spherical, linear, etc.). In Sec. 2.2.1, we go beyond the

Gilson’s treatment presenting two approaches to the alchemical transformations based on
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constrained nonequilibrium simulations. In Sec. 2.3, we describe how the relationships

for alchemical transformations change upon using the ligand-receptor distance as binding

descriptor in the double-decoupling method.

The reaction we are interested to is the association of a ligand L with a receptor R to

form a noncovalent complex RL,

R + L −−→←−− RL. (2.1)

At equilibrium, the chemical potentials of L, R, and RL into solution satisfy the following

condition

µsol,R + µsol,L = µsol,RL. (2.2)

The chemical potential of a species i at a given concentration Ci can be expressed as

µsol,i = µ◦
sol,i +RT ln

γiCi

C◦
, (2.3)

where µ◦
sol,i is the standard chemical potential, γi is the activity coefficient, C◦ is the

standard concentration in the same units as Ci (1 M or 1 molecule/1661 Å3), R is the

gas constant and T is the absolute temperature. As Gilson noted, µ◦
sol,i is the chemical

potential in a hypothetical standard state in which each species is at standard concentra-

tion in the solvent, but does not interact with other solute molecules. It is worth noting

that in the infinite dilution limit the activity coefficients of the solute species approach

unity [30, 31]. Recasting Eqs. 2.2 and 2.3, we obtain the relation between the standard

free energy of binding and the binding constant KRL

∆G◦
RL ≡ µ◦

sol,RL − µ◦
sol,R − µ◦

sol,L = −RT ln

(

γRL

γRγL

C◦CRL

CRCL

)

≡ −RT lnKRL. (2.4)

A fundamental relationship to link the ABFE, ∆G◦
RL, and hence the equilibrium constant

KRL, to statistical thermodynamical quantities affordable computationally has been de-

rived by Hill in Ref. [32] and modified by Gilson [1] to include explicitly the standard

concentration,

µ◦
sol,R = −RT ln

(

1

VN,RC◦

QN,R(VN,R)

QN,0(VN,0)

)

+ P ◦V R, (2.5)

with analogous expressions for the ligand L and the complex RL. In the previous equa-

tion, QN,R(VN,R) is the canonical partition function for a solution consisting of N solvent

molecules and one molecule R at volume VN,R, which is the volume of this solution when

it is at equilibrium at the standard pressure P ◦. Analogously, QN,0(VN,0) is the canonical
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partition function of N solvent molecules alone at the volume VN,0, namely the equilib-

rium volume of the pure-solvent sample at standard pressure. Finally, V R = VN,R − VN,0

is the volume change occurring at standard pressure when one molecule R is added to N

molecules of solvent. It is worth noting that the term P ◦V R into Eq. 2.5 is typically very

small [33], because V R corresponds to about the molecular volume of R.

We now provide a more detailed expression of the standard chemical potentials µ◦
sol,R

and µ◦
sol,L, by exploiting the representation of the canonical partition functions in terms of

the classical statistical thermodynamics [34,35]. In this framework, the partition function

QN,R(VN,R) can be written as a phase-space integral separable as the product of an integral

over the positional variables, i.e. the atomic coordinates, and two integrals over the

dynamical variables, i.e. the conjugate momenta related to the solute and solvent atoms:

QN,R(VN,R) =
1

σsol,R σN
S

∫

e−βU(r′
R
,rS)dr′RdrS

∫

exp

(

−β
MR
∑

i=1

p2i
2mi

)

dpR

∫

exp

(

−β
MR+MS
∑

i=MR+1

p2i
2mi

)

dpS, (2.6)

where β = (RT )−1, the symbols r′R, pR and MR denote the atomic coordinates, the

conjugate momenta and the number of atoms of the R molecule, respectively, and rS, pS

andMS are the analogous quantities for theN solvent molecules. We note that, at variance

with the integral over the conjugate momenta, the integral over r′R and rS cannot be split,

because the coordinates of solute and solvent are intimately connected through mixed

terms in the energy U(r′R, rS) of the system. In Eq. 2.6, σsol,R and σS are the symmetry

numbers of R into solution and of the solvent molecule. To specify that the symmetry

number of R is related to the solution environment is necessary because we will show that

analogous factors will be introduced for the gas phase and the complex RL. It is worth

considering that the prefactor arising from the quantum-mechanical correction is not

included in the expression of QN,R(VN,R), because it does not contribute to the calculation

of the ABFE. Following Gilson, we introduce a molecular axis system to separate the lab-

frame coordinates r′R of R into internal and external, even if other definitions are also

possible. This molecular axis system is built taking as reference three atoms of R. Atom 1

becomes the origin of the molecular coordinates, denoted as RR. The vector joining atom

1 with atom 2 defines the x-axis. The direction of the y-axis is given by the direction

of the vector joining atoms 2 and 3, minus the x-component of this vector. The z-axis

is constructed as the cross-product of the x- and y-axes. The six coordinates thus fixed,
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namely RR plus the Eulerian angles ξR,1, ξR,2 and ξR,3 that specify the orientation of the

molecular frame relative to the lab frame, correspond to the external coordinates of R.

The set of 3MR − 6 internal coordinates of R will be indicated with rR. Noting that the

integrals over rR and over rS do not depend upon the position and orientation of R, the

integrals over RR, ξR,1, ξR,2 and ξR,3 can be done at once. Considering that R is typically

a nonlinear molecule, the integrals yield 8π2VN,R. Moreover, considering that the integral

over the momenta components of an atom i yields a factor (2πmiRT )3/2, the partition

function of Eq. 2.6 can be written as

QN,R(VN,R) =
8π2VN,RZN,R

σsol,R σN
S

MR+MS
∏

i=1

(2πmiRT )3/2, (2.7)

where

ZN,R =

∫

e−βU(rR,rS)drRdrS (2.8)

is the configuration integral for a system consisting of one R molecule into N solvent

molecules. In a similar way, we may express the partition function of N solvent molecules

as

QN,0(VN,0) =
1

σN
S

∫

e−βU(rS)drS

∫

exp

(

−β
MR+MS
∑

i=MR+1

p2i
2mi

)

dpS

=
ZN,0

σN
S

MR+MS
∏

i=MR+1

(2πmiRT )3/2, (2.9)

where ZN,0 is the configuration integral for the solvent sample

ZN,0 =

∫

e−βU(rS)drS. (2.10)

Substituting Eqs. 2.7 and 2.9 into Eq. 2.5, we obtain

µ◦
sol,R = −RT ln

(

8π2

C◦ σsol,R

MR
∏

i=1

(2πmiRT )
3

2

ZN,R

ZN,0

)

+ P ◦V R. (2.11)

Similar arguments lead to a relationship for µ◦
sol,L. However considering that the ligand

can be also linear in shape and even a single atom, integration over the orientational

degrees of freedom can give 8π2, 4π and 1, respectively (from now on, this geometry

factor will denoted as VξL). Therefore, the generic expression for µ◦
sol,L is

µ◦
sol,L = −RT ln

(

VξL
C◦ σsol,L

ML
∏

i=1

(2πmiRT )
3

2

ZN,L

ZN,0

)

+ P ◦V L. (2.12)
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Here, the product is extended to the ML components of the conjugate momenta of L.

The calculation of the standard chemical potential of the complex µ◦
sol,RL requires a

specific treatment of the external and internal coordinates of RL. The former are assumed

to be the external coordinates of R, while the external coordinates of L, indicated as

ζL ≡ (RL, ξL,1, ξL,2, ξL,3), are taken to be defined relative to R, so that they become internal

coordinates of the complex. The arguments adopted to determine µ◦
sol,R and µ◦

sol,L may

also be used here with the difference that the configuration integral of the complex must

be restricted to the configurations for which R and L are complexed [35,36]. This can be

realized introducing a step function I(ζL) that holds 1 for complexed configurations and

0 otherwise. We can thus obtain the following expression:

µ◦
sol,RL = −RT ln

(

8π2

C◦ σcp,Lσcp,R

ML+MR
∏

i=1

(2πmiRT )
3

2

ZN,RL

ZN,0

)

+ P ◦V RL, (2.13)

where the product is extended to the ML +MR components of the conjugate momenta of

L and R and σcp,L and σcp,R are the symmetry numbers associated with L and R when the

complex is formed (we notice that Gilson indicated the symmetry number of the complex

as σAB). These numbers may indeed differ from σsol,L and σsol,R, as long the molecular

symmetry is not preserved upon complexation. In Eq. 2.13, the configuration integral of

RL into solution is

ZN,RL =

∫

I(ζL)JζLe
−βU(ζL,rL,rR,rS) dζLdrLdrRdrS, (2.14)

where JζL is the absolute value of the Jacobian determinant for the rotation and translation

of L relative to R. We remark that, for purposes of generality, we keep the full dependence

of JζL on the translational and rotational (external) coordinates of L. Instead, Gilson and

coworkers take a Jacobian determinant dependent on the only rotation of L, implicitly

assuming that the position of L is relative to a Cartesian reference frame on R.

Recasting Eqs. 2.11, 2.12 and 2.13 into Eq. 2.4, we get the expression for the ABFE

∆G◦
RL = −RT ln

(

C◦

VξL
σsol,L σsol,R

σcp,L σcp,R

ZN,RLZN,0

ZN,RZN,L

)

+ P ◦(V RL − V R − V L). (2.15)

2.2 Alchemical transformations: the double-decoupling

method

The DDM is a route to the estimate of ∆G◦
RL and is based on the calculation of the

free energy differences between two independent processes, represented in the scheme of
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Fig. 2.1: the annihilation of L from the solvated complex RL and the annihilation of

L from the solvent. In the former case, annihilation is accomplished by turning off the

interactions of L with solvent and receptor R in a solution of RL, while in the latter case

annihilation is performed by turning off the interactions of L with the solvent in a solution

of L. It is worth noting that, in both situations, we do not deal with a total annihilation of

Figure 2.1: Thermodynamic analysis of double-decoupling method

L, but rather with a decoupling of L from its environment. Its intramolecular interactions

are left in place and hence it is virtually “transformed” in a ideal-gas molecule. Before

discussing the annihilation processes and in particular the details of our approach, it

is convenient to see how ∆G◦
RL is correlated to the free energies ∆G◦

1 and ∆G◦
2 of the

processes represented in Fig. 2.1 and how these quantities can be expressed in terms of

configuration integrals. According to Gilson [1], ∆G◦
1 and ∆G◦

2 can be written as

∆G◦
1 = µ◦

sol,R + µ◦
gas,L − µ◦

sol,RL, (2.16)

∆G◦
2 = µ◦

gas,L − µ◦
sol,L, (2.17)

where µ◦
gas,L is the standard chemical potential of L in the ideal gas phase and the other

standard chemical potentials are defined in Eqs. 2.11, 2.12 and 2.13. Considering Eq. 2.4

together with Eqs. 2.16 and 2.17, it is immediate to show that

∆G◦
RL = ∆G◦

2 −∆G◦
1. (2.18)

2.2.1 Decoupling the ligand from the receptor and solvent: ∆G◦1
calculation

The standard chemical potential of L in the ideal gas phase, µ◦
gas,L, is related to the

natural logarithm of the molecular partition function as

µ◦
gas,L = −RT lnQ0,L(V

◦), (2.19)
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where it is explicitly reported that the partition function must be evaluated in the phase

space limited to the standard volume V ◦ = 1/C◦. Following the arguments leading to Eq.

2.12, we get

µ◦
gas,L = −RT ln

(

VξL
C◦ σgas,L

ML
∏

i=1

(2πmiRT )
3

2 Z0,L

)

. (2.20)

In the previous equation, VξL is from the integral over the orientation of L (VξL = 8π2, 4π, 1

for non linear, linear and atomic ligands, respectively), σgas,L is the symmetry number of

L in the ideal gas phase and Z0,L is the configuration integral in the internal coordinates:

Z0,L =

∫

e−βU(rL)drL. (2.21)

The external coordinates of L are integrated in Eq. 2.20, giving the contribution VξL/(C◦ σgas,L).

Substituting Eqs. 2.11, 2.13 and 2.20 into Eq. 2.16, we obtain

∆G◦
1 = −RT ln

(VξL
C◦

σcp,L σcp,R

σgas,L σsol,R

ZN,RZ0,L

ZN,RL

)

+ P ◦(V R − V RL). (2.22)

In the DDM, an artificial energy function U(λ, ζL, rL, rR, rS) dependent on a control pa-

rameter λ ∈ [0, 1] is introduced, whose functional form is rather arbitrary. The only

requirements are that for λ = 0 and λ = 1 the artificial energy function must correspond

to the energy functions of the coupled and uncoupled states of the ligand in the complex,

respectively:

U(0, ζL, rL, rR, rS) = U(ζL, rL, rR, rS), (2.23)

U(1, ζL, rL, rR, rS) = U(rR, rS) + U(rL). (2.24)

Exploiting the artificial energy function, a free energy function dependent parametrically

on λ can be built as

g(λ) = −RT ln

∫

I(ζL)JζLe
−βU(λ,ζL,rL,rR,rS)dζLdrLdrRdrS. (2.25)

According to g(λ) and to the requirements of Eqs. 2.23 and 2.24, the free energy difference

between the final and initial states is

g(1)− g(0) = −RT ln

∫

I(ζL)JζLe
−βU(rR,rS)e−βU(rL)dζLdrLdrRdrS

∫

I(ζL)JζLe
−βU(ζL,rL,rR,rS)dζLdrLdrRdrS

= −RT ln
VIVξLZN,RZ0,L

ZN,RL

. (2.26)
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This equation results from assuming
∫

I(ζL)JζLdζL = VIVξL . The VI term arises from the

integral over the position, while the VξL term arises from the integral over the orientation.

These two quantities represent, together, the binding site volume. This implies that both

translational and rotational degrees of freedom of L relative to R (external coordinates

of L) within the binding site contribute to the ABFE, and Eq. 2.26 quantifies such a

contribution. The definitions of the configuration integrals, Eqs. 2.8, 2.14 and 2.21, have

also been used in deriving the second line of Eq. 2.26. In the method of thermodynamic

integration, the quantity g(1) − g(0) is directly evaluated via equilibrium simulations,

so that one must also determine VI and VξL to gain an estimate of ∆G◦
1 (see Eq. 28 of

Ref. [1]); note that VξL corresponds to ξI of the Gilson’s article). The calculation of VI

and VξL may not be straightforward and requires a separate simulation.

In this study, we propose a change of paradigm for the ligand-receptor binding, adopt-

ing a criterion based on the only position of L relative to R, say RL. From a mathematical

standpoint, this corresponds to turn from a binding function expressed in terms of position

and orientation of L, i.e. I(ζL) ≡ I(RL, ξL,1, ξL,2, ξL,3), to a binding function expressed

in terms of the position of L alone, i.e. I(RL). This assumption is consistent with the

common idea that binding occurs basically when ligand and receptor approach to each

other, regardless the mutual orientation defined here by the variables ξL,1, ξL,2 and ξL,3.

Of course, for a generic position RL satisfying the binding condition I(RL) = 1, most

orientations of L relative to R will have a negligible probability of being observed in the

coupled state, because of strong atomic overlaps between R and L. As a consequence,

these configurations will contribute negligibly to the denominator of Eq. 2.26. In the

numerator of Eq. 2.26 (uncoupled state), the integral over the orientations can instead

be done at once, giving a factor VξL . This allows us to rewrite the free energy function of

Eq. 2.25 as follows

g(λ) = −RT ln

∫

I(RL)JRL
JξLe

−βU(λ,RL,ξL,rL,rR,rS)dRLdξLdrLdrRdrS, (2.27)

where ξL is a shorthand for (ξL,1, ξL,2, ξL,3), JξL and JRL
are the Jacobian determinants

for the (external) rotational and translational coordinates of L, respectively, and dξL ≡
dξL,1dξL,2dξL,3. As noted below Eq. 2.14, the Jacobian determinant JRL

is in general

different from 1, being 1 only when RL is expressed in a Cartesian reference system. The
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free energy difference g(1)− g(0) of Eq. 2.26 is then restated straightforwardly,

g(1)− g(0) = −RT ln

∫

I(RL)JRL
JξLe

−βU(rR,rS)e−βU(rL)dRLdξLdrLdrRdrS
∫

I(RL)JRL
JξLe

−βU(RL,ξL,rL,rR,rS)dRLdξLdrLdrRdrS

= −RT ln
VIVξLZN,RZ0,L

ZN,RL

. (2.28)

In the second line of Eq. 2.28, we have carried out the integrals over RL and ξL in

the numerator, obtaining VI and VξL . We point out that, owing to the adopted binding

criterion, the integral over ξL is analytical, while numerical into Gilson’s expression Eq.

2.26 (VξL vs. VξL).

Since the paradigm of binding is based on RL, it is convenient to introduce a potential

of mean force as a function of λ including the internal coordinates of R and L, the

coordinates of the solvent and the orientational coordinates of L. This potential thus

results to be a function of both λ and RL:

e−βφ(λ,RL) =

∫

JξLe
−βU(λ,RL,ξL,rL,rR,rS)dξLdrLdrRdrS. (2.29)

According to the above definition of potential of mean force, the free energy function g(λ)

(Eq. 2.27) takes the following simplified form

g(λ) = −RT ln

∫

I(RL)JRL
e−βφ(λ,RL)dRL. (2.30)

Using the definition 2.30 of g(λ) into Eq. 2.28, we obtain

g(1)− g(0) = −RT ln

∫

I(RL)JRL
e−βφ(1,RL)dRL

∫

I(RL)JRL
e−βφ(0,RL)dRL

. (2.31)

Here, we report on two alternative algorithms to compute ∆G◦
1. One is analogous to

the method by Gilson and co-workers, being based on the direct estimate of g(1)−g(0). In
particular, we compute g(1)− g(0) from nonequilibrium molecular dynamics simulations

instead of equilibrium simulations via thermodynamic integration. First, we sample the

binding configurations for the various positions RL using an equilibrium simulation. The

correct sampling weight e−βφ(0,RL) of the initial microstates (coupled RL complex) is thus

guaranteed implicitly by the simulation. This provides an amount of isothermally and

isobarically sampled microstates, say Ntraj, to be taken as initial phase-space points for

the nonequilibrium alchemical trajectories. Equation 2.31 establishes that L be in the

same binding site in both the initial and final states. This can be accomplished by
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creating a bijective mapping between these states, with the aim of preventing the ligand

from leaving the binding site. Recently, some of us developed a nonequilibrium approach

able to guarantee such a mapping [37], allowing the estimate of free energy differences

between two configurational domains by means of steered molecular dynamics associated

with nonequilibrium work theorems. The method is based on the creation of a phase-

space mapping applied during the nonequilibrium trajectories, whether to the control

parameter employed to switch the system from the initial to the final state or to some

phase-space variable (not directly correlated to the control parameter) taken to define

the two configurational domains. The latter is just the situation that we may apply to

the alchemical transformations. While the λ control parameter is evolved in time from 0

(coupled ligand) to 1 (uncoupled ligand) according to some established time schedule, the

coordinate RL of the ligand relative to the receptor is mapped to bring the system from

a coupled to an uncoupled configuration within the binding site. This is accomplished

by fixing the RL coordinate to the initial value (obtained from the equilibrium sampling)

during the alchemical transformation, thus preventing the ligand from leaving the binding

site. A constraint to RL can be applied whether using some constraining method, such as

RATTLE [38] or SHAKE [39], or more simply by enforcing stiff (harmonic) potentials to

the three components ofRL. The latter is the algorithm employed in this work. Using this

simulation scheme, we thus produce Ntraj alchemical trajectories that allow to compute

the free energy difference g(1)− g(0) by using the Jarzynski equality [40]:

g(1)− g(0) = −RT ln
〈

e−βW
〉

, (2.32)

where the average is performed over the Ntraj work values W associated to the alchemical

trajectories. For a generic trajectory, the work is computed via the standard formula [41]

W =

∫ τ

0

∂U(λ,RL, ξL, rL, rR, rS)

∂t
dt, (2.33)

where RL is fixed to the value of the initial microstate and τ is the (simulation) time of

the alchemical trajectory. We outline that the explicit dependence on time lies only on

the λ parameter, while the other variables are uncontrolled degrees of freedom.

Once the quantity g(1) − g(0) is estimated, the contribution ∆G◦
1 to the ABFE can

be computed through the following relationship (use the second line of Eq. 2.28 into Eq.

2.22)

∆G◦
1 = g(1)− g(0)−RT ln

(

1

VIC◦

σcp,L σcp,R

σgas,L σsol,R

)

+ P ◦(V R − V RL). (2.34)
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Here, it is important to note that, as in thermodynamic integration method, a calculation

of the binding site volume VI needs to be carried out.

In order to avoid the calculation of VI , which implies to know a way of evaluating

the function I(RL), we may resort to an indirect method based on the calculation of the

denominator of the first line of Eq. 2.31. This is the second approach that we propose,

outlining that other similar schemes based on equilibrium simulations have been published

[42]. Noting that e−βφ(1,RL) does not depend on RL and that
∫

I(RL)JRL
dRL = VI , we

can rewrite Eq. 2.31 as

g(1)− g(0) = −RT ln
VI e−βφ(1,RL)

∫

I(RL)JRL
e−βφ(0,RL)dRL

. (2.35)

In the previous equation, the quantity VξL does not appear in the numerator because the

integral over the orientational coordinates of L is included into e−βφ(1,RL) (see Eq. 2.29).

Substituting Eq. 2.35 into Eq. 2.34 yields

∆G◦
1 = −RT ln

(

σcp,L σcp,R

C◦ σgas,L σsol,R

e−βφ(1,RL)

∫

I(RL)JRL
e−βφ(0,RL)dRL

)

+ P ◦(V R − V RL). (2.36)

With respect to the first alchemical scheme represented by Eq. 2.34, in this second

approach the knowledge of VI is not necessary. On the other side, here we need to

compute the integral over RL, and especially to determine the difference between the

potentials of mean force for the coupled and uncoupled systems as a function of RL, i.e.

φ(0,RL) − φ(1,RL). Indeed, this may not be a simple task. To tackle the problem, we

resort to an intermediate configuration of the complex RL featured by an established

position R′
L of L, the corresponding potential of mean force in the coupled state being

φ(0,R′
L). The definition of this configurational state allows us to write

e−βφ(1,RL)

∫

I(RL)JRL
e−βφ(0,RL)dRL

=
eβ[φ(0,R

′

L
)−φ(1,R′

L
)]

∫

I(RL)JRL
eβ[φ(0,R

′

L
)−φ(0,RL)]dRL

, (2.37)

where, considering that φ(1,RL) is independent uponRL, the equality φ(1,RL) = φ(1,R′
L)

has been used. Numerator and denominator of the right side of Eq. 2.37 can be com-

puted separately. The denominator can be computed from an equilibrium simulation of

the bounded RL complex (for tight binding) or using a method to sample preferentially

bounded complex configurations, such as the umbrella sampling method [29] (for soft

binding). In any case, configurations featured by RL = R′
L must be sampled during the

equilibrium simulation, for being defined the function φ(0,R′
L). Therefore, even if R′

L can
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in principle be chosen arbitrarily, it is statistically convenient that I(R′
L) = 1, or better

that R′
L falls in a binding site region with small value of the potential of mean force (high

probability region).

From the operational point of view, it is important to note that the denominator of

Eq. 2.37 corresponds to the probability density of finding the ligand at the position R′
L

once the complex RL is formed, namely such that I(RL) = 1. This can be realized writing

the denominator as follows

ρ(R′
L) ≡

e−βφ(0,R′

L
)

∫

I(RL)JRL
e−βφ(0,RL)dRL

=
δp(R′

L)

JR′

L
δRL

, (2.38)

where δp(R′
L) is the infinitesimal probability that the system is found in the volume

element JR′

L
δRL centered into R′

L during an equilibrium sampling of the only bounded

state of the complex. Note that the Jacobian determinant JR′

L
is computed at the position

R′
L. Let suppose that the bounded state of the complex is sampled through an equilibrium

simulation, or, more generally, through a simulation adopting some biasing potential

(e.g., using umbrella sampling), in which we are able to sample the bounded state of

the complex. In such a situation, we can define a position R′
L of L and a resolution

δRL for establishing when the system takes that position. Denoting the number of times

the system visits the volume element JR′

L
δRL centered into R′

L as δMR′

L
and the total

number of bounded configurations sampled during the simulation as Mtot, the probability

of interest is simply computed as

δp(R′
L) =

δMR′

L

Mtot

. (2.39)

The numerator of Eq. 2.37 is estimated through an alchemical transformation. Anal-

ogously to the first alchemical scheme, a number of initial microstates are sampled by

enforcing a fixed position R′
L of the ligand. Starting from these microstates, nonequilib-

rium trajectories are performed with an established time schedule for λ, from λ = 0 to

λ = 1. The works computed from these trajectories via Eq. 2.33 are thus employed in

the Jarzynski equality [40] to evaluate the free energy difference between the initial and

final states, which corresponds to φ(1,R′
L)− φ(0,R′

L).

In summary, considering the introduction of an intermediate configuration (Eq. 2.37)

and the definition of probability density (Eq. 2.38), ∆G◦
1 can be rewritten as

∆G◦
1 = φ(1,R′

L)− φ(0,R′
L)−RT ln

(

ρ(R′
L)

σcp,L σcp,R

C◦ σgas,L σsol,R

)

+ P ◦(V R − V RL), (2.40)

where φ(1,R′
L)− φ(0,R′

L) and ρ(R′
L) are computed as described above.
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2.2.2 Decoupling the ligand from the solvent: ∆G◦2 calculation

The contribution ∆G◦
2 to ∆G◦

RL is obtained considering Eq. 2.17. Substituting Eqs.

2.12 and 2.20 into Eq. 2.17 yields

∆G◦
2 = −RT ln

(

σsol,L

σgas,L

ZN,0 Z0,L

ZN,L

)

− P ◦V L, (2.41)

where ZN,L, ZN,0 and Z0,L are the known configurational integrals. It is interesting to

note that, at variance with ∆G◦
1, the contribution ∆G◦

2 does not depend upon the choice

of the standard concentration.

In this case, the artificial energy function U(λ, ζL, rL, rS) does not depend upon the

internal coordinates of R (indeed, we deal with a molecule of L in the solvent). The

requirements on U are that for λ = 0 and λ = 1 the artificial energy function must

correspond to the energy functions of the coupled and uncoupled states of the ligand in

the solvent, respectively:

U(0, ζL, rL, rS) = U(ζL, rL, rS), (2.42)

U(1, ζL, rL, rS) = U(rS) + U(rL). (2.43)

We outline that the external coordinates of L are relative to the lab frame rather than

to R. A free energy function dependent parametrically on λ can be built exploiting the

artificial energy function,

g(λ) = −RT ln

∫

JζLe
−βU(λ,ζL,rL,rS)dζLdrLdrS. (2.44)

According to g(λ) and to the requirements of Eqs. 2.42 and 2.43, the free energy difference

between the final and initial states is

g(1)− g(0) = −RT ln

∫

JζLe
−βU(rS)e−βU(rL)dζLdrLdrS

∫

JζLe
−βU(ζL,rL,rS)dζLdrLdrS

= −RT ln
V VξLZN,0 Z0,L

V VξLZN,L

= −RT ln
ZN,0 Z0,L

ZN,L

. (2.45)

In the numerator, V is the volume of the container (simulation box) and arises from

the integral over the position RL, while VξL arises from the integral over the orientation

(ξL,1, ξL,2, ξL,3). In the denominator, the integrals over the internal coordinates of the

solute, rL, and over the coordinates of the solvent, rS, do not depend upon the position

or orientation of the solute, ζL. Therefore, the integrals over ζL may be carried out at

once yielding the factor V VξL .
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We may now define the free energy function g(λ) in terms of the potential of mean

force as a function of position and orientation of the ligand:

g(λ) = −RT ln

∫

JζLe
−βφ(λ,ζL)dζL, (2.46)

where

e−βφ(λ,ζL) =

∫

e−βU(λ,ζL,rL,rS)drLdrS. (2.47)

As observed above, the integrals over rL and rS into Eq. 2.47 do not depend upon ζL and

hence the potential of mean force φ(λ, ζL) is independent on ζL. This allows to write Eq.

2.46 as

g(λ) = φ(λ, ζL)−RT ln(V VξL). (2.48)

Substituting Eq. 2.48 into Eq. 2.45 and the resulting equation into Eq. 2.41, we obtain

∆G◦
2 = φ(1, ζL)− φ(0, ζL)−RT ln

(

σsol,L

σgas,L

)

− P ◦V L. (2.49)

It is worth mentioning here that the knowledge of σgas,L is actually unnecessary because

it drops out when Eqs. 2.40 and 2.49 are recasted into Eq. 2.18.

Operatively, the free energy contribution ∆G◦
2 to the ABFE can be computed using

nonequilibrium molecular dynamics simulations in the usual way. First, a set of ini-

tial microstates is produced through an equilibrium simulation of a molecule L into N

molecules of solvent (without any constraint). Starting from these microstates, nonequi-

librium trajectories are performed with an established time schedule for λ, starting from

λ = 0 (coupled ligand) and ending to λ = 1 (uncoupled ligand). The works computed

from these alchemical trajectories via Eq. 2.33, are then employed in the Jarzynski equal-

ity [40] (Eq. 2.32) to evaluate the free energy difference φ(1, ζL) − φ(0, ζL) between the

initial and final states, to be finally used into Eq. 2.49.

In the present study, we do assume that the symmetry of R and L does not change in

going from the bulk phase to the comlexed state, namely σsol,L = σcp,L and σsol,R = σcp,R.

The symmetry number of L in the gas phase, σsol,L, does not matter because it drops out

when ∆G◦
1 and ∆G◦

2 are recasted into Eq. 2.18. Moreover, we make the approximation

that the expansion/compression work is negligible in the reaction (Eq. 2.1), so that

P ◦V L = 0. According to the above approximation and assumptions, the expression for

∆G◦
2 employed in this work simplifies

∆G◦
2 = φ(1, ζL)− φ(0, ζL). (2.50)
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2.3 Using the ligand-receptor distance as binding de-

scriptor in the double-decoupling method

First of all, we outline that, among the two DDM schemes described in Sec. 2.2, in

this study we employ to the one associated with Eq. 2.40 (for ∆G◦
1 calculation), along

with a binding descriptor based on the distance between ligand and receptor. Therefore,

in the present section, we discuss how the basic relationship of the DDM, namely Eqs.

2.40 together with the “applicative” Eqs. 2.38 and 2.39, are modified upon using the

only distance between ligand and receptor as the binding descriptor. A discussion on how

Eq. 2.49 changes according to assumptions on the symmetry numbers and on the work

of compression/expansion is reported at the end of Sec. 2.2.2.

Specifically, we adopt the distance r between the centers of mass of the β-CD and the

aromatic compound to establish when the complex is in place, i.e., when I(r) = 1. In

principle, in order to apply this criterion, we need to define two threshold distances, say r∗1
and r∗2, such that I(r) = 1 if r∗1 < r < r∗2 and I(r) = 0 otherwise. However, we note that

the binding function I(·) enters the DDM indirectly via Eq. 2.39. This suggests that one

does not need to define r∗1 and r∗2, but rather to find a way of sampling most of the binding-

site region during an equilibrium simulation. This is indeed the procedure followed for

the complexes formed by β-CD with naphthalene and anthracene. Instead, for the β-CD

benzene complex, the bounded configurations have been sampled by means of an umbrella

sampling simulation supplemented with a soft harmonic restraint. Of course, this strategy

introduces an error, which can be relevant for soft-binding complexes, because the ABFE

basin can be ill defined. This is why it is necessary to use a restraining potential (umbrella

sampling), with a prior idea of its softness. In tight binding complexes, such a drawback is

less dramatic because the sampling is naturally limited around the binding pocket during

an equilibrium simulation.

We start considering that the distance r we are talking about corresponds to the dis-

tance between the origin of the R reference system and the origin of the L reference system,

namely the module of RL. This suggests of using spherical coordinates to represent RL,

i.e. RL ≡ (r, θ, φ), where θ is the angle between RL and the z-axis of the R-frame and

φ is the angle formed by the projection of RL on the xy-plane of the R-frame and the

x-axis of the same frame. Then, we make explicit the coordinates r, θ and φ into Eq.
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2.27, expressing the binding function I(·) in terms of the only r coordinate:

g(λ) = −RT ln

∫

I(r) r2 sin θ JξLe
−βU(λ,RL,ξL,rL,rR,rS)dRLdξLdrLdrRdrS, (2.51)

where for the sake of compactness RL ≡ (r, θ, φ), dRL ≡ dr dθ dφ and the quantity

r2 sin θ is the Jacobian determinant JRL
. The other symbols in Eq. 2.51 have preserved

their original meaning. Thus, the free energy difference g(1)− g(0) of Eq. 2.28 becomes

g(1)− g(0) = −RT ln

∫

I(r) r2 sin θ JξLe
−βU(rR,rS)e−βU(rL)dRLdξLdrLdrRdrS

∫

I(r) r2 sin θ JξLe
−βU(RL,ξL,rL,rR,rS)dRLdξLdrLdrRdrS

= −RT ln
4πVIVξLZN,RZ0,L

ZN,RL

. (2.52)

In the second line of the previous equation, 4π arises from integration over θ and φ, VξL
arises from integration over the orientational coordinates of L (i.e., ξL) and VI is now the

integral
∫

I(r)r2dr. The second line of Eq. 2.52 allows us to write ∆G◦
1 of Eq. 2.22 as

(viz. Eq. 2.34)

∆G◦
1 = g(1)− g(0)−RT ln

(

1

4πVIC◦

σcp,L σcp,R

σgas,L σsol,R

)

+ P ◦(V R − V RL). (2.53)

The unnormalized average probability of finding the ligand in a generic point at a

distance r from the origin of the R-frame (for a given λ) corresponds, up to a multiplication

factor, to the radial distribution function, which, in turn, equals the exponential of the

potential of mean force, e−βφ(λ,r):

e−βφ(λ,r) =
1

4π

∫

sin θ JξLe
−βU(λ,r,θ,φ,ξL,rL,rR,rS) dθ dφ dξLdrLdrRdrS. (2.54)

The quantity 4πr2e−βφ(λ,r)dr is therefore proportional to the probability of finding L

into a spherical shell of radius r and thickness dr centered at the origin of the R-frame.

According to the above definition of potential of mean force, the free energy function g(λ)

(Eq. 2.51) becomes

g(λ) = −RT ln

∫

I(r) 4πr2 e−βφ(λ,r)dr. (2.55)

Used into the first line of Eq. 2.52, the previous relationship gives the free energy difference

g(1)− g(0)

g(1)− g(0) = −RT ln
4πVI e−βφ(1,r)

∫

I(r) 4πr2 e−βφ(0,r)dr
. (2.56)
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In this equation, integration over r is carried out because φ(1, r) does not depend on r.

Using Eq. 2.56 into Eq. 2.53 yields

∆G◦
1 = −RT ln

(

σcp,L σcp,R

C◦ σgas,L σsol,R

e−βφ(1,r)

∫

I(r) 4πr2 e−βφ(0,r)dr

)

+ P ◦(V R − V RL). (2.57)

As in Sec. 2.2.1, we introduce an intermediate configuration corresponding to r = r′.

This allows to write

e−βφ(1,r)

∫

I(r) 4πr2 e−βφ(0,r)dr
=

eβ[φ(0,r
′)−φ(1,r′)] e−βφ(0,r′)

∫

I(r) 4πr2 e−βφ(0,r)dr
, (2.58)

where, the equality φ(1, r) = φ(1, r′) has been used because φ(1, r) is independent upon

r.

As already noted (Sec. 2.2.1), the free energy difference φ(1, r′) − φ(0, r′) appearing

in the numerator of Eq. 2.58 is estimated through alchemical transformations. A number

of initial microstates of the coupled system (λ = 0) are sampled at the fixed distance

r′ of L from the origin of the R-frame. Starting from these microstates, nonequilibrium

trajectories are performed with an established time schedule for λ, from λ = 0 to λ =

1. The works computed from these trajectories via Eq. 2.33 are thus employed in the

Jarzynski equality [40] (Eq. 2.32).

The remaining part of the numerator of Eq. 2.58 is computed noting that it corre-

sponds to the probability density of finding L in a generic point at the distance r′ from

the origin of the R-frame, once the complex is in a bounded configuration, i.e., I(r) = 1:

ρ(r′) ≡ e−βφ(0,r′)

∫

I(r) 4πr2 e−βφ(0,r)dr
=

δp(r′)

4πr′2δr
, (2.59)

where δp(r′) is the infinitesimal probability that the system is in a spherical shell of volume

4πr′2δr around the radius r′ during an equilibrium simulation of the only bounded state

of the complex. As explained in Sec. 2.2.1 (see discussion about Eq. 2.39), computing

δp(r′) from an equilibrium simulation of the bounded RL complex is straighforward.

In summary, considering the introduction of an intermediate configuration (Eq. 2.58)

and the definition of probability density (Eq. 2.59), ∆G◦
1 of Eq. 2.57 can be rewritten as

∆G◦
1 = φ(1, r′)− φ(0, r′)−RT ln

(

ρ(r′)
σcp,L σcp,R

C◦ σgas,L σsol,R

)

+ P ◦(V R − V RL), (2.60)

where φ(1, r′)− φ(0, r′) and ρ(r′) are computed as described above.
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The same assumptions applied to ∆G◦
2 (see discussion at the end of Sec. 2.2.2) lead

to the final expression for ∆G◦
1:

∆G◦
1 = φ(1, r′)− φ(0, r′)−RT ln

ρ(r′)

C◦
. (2.61)

2.4 Potential energy function and work in alchemical

transformations

In a system subject to a continuous alchemical transformation, only the non-bonded

potential energy function associated with the interactions between alchemical and non-

alchemical species undergoes a switch-off or switch-on. All intramolecular interactions

and the interactions between nonalchemical species are unchanged during the transfor-

mation. The general theory underlying alchemical transformations is reported in Sec. 2.2,

where a generic potential energy function dependent on the alchemical parameter λ(t) is

introduced (see Eq. 2.25).

In the program ORAC [27], employed to carry out all the MD simulations, the non-

bonded contribution to the total energy of a system subject to an alchemical transforma-

tion is expressed as

U(r1, ..., rN , λ, η) =
∑

i

∑

j>i[1− λij(t)]
QiQj

rij
erfc(αrij)

− α
π1/2

∑

i[1− λi(t)]
2Q2

i + Url + Ualch − Uintra

+
∑

i

∑

j>i 4ǫij [1− ηij(t)]
(

1
[αηij(t)+(rij/σij)6]

2 − 1
αηij(t)+(rij/σij)6

)

(2.62)

where α is the Ewald convergence parameter related to the width of the Gaussian spher-

ical charge distribution, erfc(x) is the complementary error function, rij is the distance

between the atoms i and j and Qi is the net charge on the atom i. The first term in the

non-bonded energy corresponds to the electrostatic interactions in the direct lattice. The

second term refers to the self-interactions of the Gaussian charge distributions. The Url

term corresponds to the interactions between Gaussian distributions in the zero cell as

well as in the infinite direct lattice, reformulated as an absolutely convergent summation

in the reciprocal lattice. Its expression is the following

Url =
1

2πU

∑

m 6=0

exp
(

−π2 |m|2 /α2
)

|m|2
S(m, λ) S(−m, λ), (2.63)
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where V the unit cell volume, m a reciprocal lattice vector and the quantity S(m, λ) is

S(m, λ) =
∑

i

(1− λi(t))Qi exp(−2πim · ri). (2.64)

The term Ualch in Eq. 2.62 is an alchemical correction to the electrostatic energy having

the following expression

Ualch =
∑

ij>14

QiQj[1− (1− λi(t))(1− λj(t))]
erf (αrij)

rij
, (2.65)

where the sum is extended to the atoms of the alchemical species separated by more than

4 covalent bonds and erf(x) is the error function. The Uintra term in Eq. 2.62 is added

to remove the 1-2, 1-3 and 1-4 intramolecular interactions between the alchemical species

introduced spuriously in the Url contribution (Eq. 2.63):

Uintra =
∑

ij−excl.

(1− λi(t))(1− λj(t))QiQj
erf(αrij)

rij
, (2.66)

where the sum is extended to all 1-2, 1-3 and 1-4 interactions. Finally, the last term in

Eq. 2.62 corresponds to the modified atom-atom van der Waals interactions introduced

in Ref. [43] incorporating a soft-core parametrization, where the infinity in the Lennard-

Jones interaction is smoothed to zero as a function of ηij(t). The parameter γ is a

positive constant (usually set to 0.5; see Ref. [44]) that controls the smoothing to zero of

the derivatives of the Lennard-Jones function as rij tends to zero [45].

As we can see from Eqs. 2.62, 2.64, 2.65 and 2.66, two kinds of alchemical parameters

actually inter into play. The λi(t) parameter is introduced to scale the charges of the

alchemical species. Note that λij(t) is not an additional parameter because it depends

on λi(t) and λj(t) according to the combination rules reported in Table 2.1. The ηi(t)

parameter is associated with the Lennard-Jones potential through ηij(t) (also reported

in Table 2.1). The time dependence of the λi(t) and ηi(t) parameters used to switch

a part of the non-bonded potential energy is externally imposed using an appropriately

selected time protocol. The non-bonded potential energy U(r1, ..., rN , λ, η) (Eq. 2.62)

coincides with the standard potential energy of a system with no alchemical species when

all the alchemical parameters, λi(t) and ηi(t) are constant and equal to zero. At the

other extreme, when λi(t) = ηi(t) = 1, the alchemical species “disappear” according to

the combination rules for λij(t) and ηij(t) specified in Table 2.1. These rules are such

that the modified alchemical potential is enforced only when one of the two interacting

27



Theory

i j λij(t) ηij(t)

Alchemical Nonalchemical λi(t) ηi(t)

Nonalchemical Nonalchemical λj(t) ηj(t)

Nonalchemical Nonalchemical 0 0

Alchemical Alchemical 0 0

Table 2.1: Atom-atom combination rules for alchemical and nonalchemical

species.

atoms is alchemical while atom-atom interactions within a given alchemical species are

accounted for with the standard potential or simply set to zero when they do refer to atoms

on different alchemical species. In general, the time protocol for the van der Waals and

electrostatic control parameters may differ from each other, which gives us some flexibility

in devising the protocol of the alchemical transformation. For example, in a decoupling

process (switch off of the non-bonded potential), in order to prevent interatomic overlap

during the simulated trajectory, the first parameter undergoing increase (from 0 to 1)

is λi(t). Once the electrostatic interactions of the alchemical species are switched off,

the parameters ηi(t) are increased (from 0 to 1) according to some other time schedule.

Indeed, this is the time protocol adopted in our alchemical calculations, as it will be

detailed in Sec. 3.1.

In the context of nonequilibrium alchemical transformations, the work performed on

the system to drive the alchemical parameters from 1 to 0 during a simulation of length

τ can be written as

W =

∫ τ

0

∂H(x, λ, η)

∂λ
λ̇dt+

∫ τ

0

∂H(x, λ, η)

∂η
η̇ dt. (2.67)

In a NVT or NPT simulation with an ongoing alchemical process, the alchemical work,

Eq. 2.67, could be computed simply by monitoring the changes in the total energy of the

systems, that includes the real potential and kinetic energy of system and the potential

and kinetic energies of the barostat and the thermostats. This energy is a constant of the

motion and hence any variation of it must correspond to the work done on the system.

Alternatively, the work can be computed by analytically evaluating the λ and η derivatives

of the non-bonded energy of Eq. 2.62.

The work can also by computed numerically observing that the differential work due
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to a δλ or δη increment of the alchemical factors is given by

dW =
1

2
(U(λ+ δλ, η)− U(λ− δλ, η) + U(λ, η + δη)− U(λ, η − δη)), (2.68)

where U(λ, η) is a shorthand for U(r1, ..., rN , λ, η). Equation 2.68 is correct to order o(δλ2)

and o(δη2). The quantity dW can be easily accumulated during the simulated trajectory,

providing, at the end of the trajectory, the total work to be used in nonequilibrium work

relationships (see Sec. 3.2). This last approach is the one employed in our calculations,

as it is computationally cheaper.

More technical details about the potential energy function of Eq. 2.62 and the calcu-

lation of the alchemical work can be found in Ref. [46].
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System, Simulations and Force Field

3.1 Simulation technical details and force field

In the present study, all MD simulations were performed in the isothermal-isobaric

(NPT) ensemble by using cubic periodic boundary conditions. Constant pressure of 1 atm

was enforced isotropically using a modification of the Parrinello-Rahman Lagrangian [47]

and temperature control (298 K) was achieved by using the Nosé-Hoover thermostat [48].

Electrostatic interactions were computed using the smooth particle mesh Ewald method

with the convergence parameter set to 0.43 Å−1 and a grid spacing of ∼= 1 Å for the

fast Fourier transform calculation. Equations of motion were integrated using a multiple

time-step r-RESPA scheme [49], with the potential subdivision described in Ref. [49]. In

molecules, the fastest motions are the stretching vibrations, especially those involving

hydrogen atoms. These degrees of freedom, however, have relatively little influence on

many properties, including the noncovalent binding affinity we are interested in. There-

fore, from the computational standpoint it is advantageous to constrain all covalent bonds

involving hydrogen atoms, which allows for longer simulation time-steps and ultimately

faster simulations.

The force field is based on the GLYCAM parameter set [26]. The interactions among

atoms are described by a potential energy based on intramolecular and intermolecular
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functions:

Utot = Unb + Ub. (3.1)

The first term of Eq. 3.1 is the non-bonded potential energy, which is partitioned into

electrostatic and van der Waals interactions:

Unb = Uvdw + Uel. (3.2)

The potential energy Unb is described in detail in Section 3.1. Here, we remark that van der

Waals interactions are modelled by using Lennard-Jones type potentials with parameters

σij and ǫij (see Eq. 2.62), for which Lorentz-Berthelot mixing rules are adopted:

σij =
1

2
(σi + σj) (3.3)

ǫij =
√
ǫiǫj. (3.4)

The second term in Eq. 3.1 is the bonded potential energy, which is partitioned into

several contributions

Ub = Ustrech + Ubend + Up−tors + Ui−tors + U14, (3.5)

where Ustrech and Ubend are the stretching and bending energies, respectively:

Ustrech =
∑

bonds

Kr(r − r0)
2, (3.6)

Ubend =
∑

angles

Kθ(θ − θ0)
2, (3.7)

whereKr andKθ are the bonded force constants associated with bond stretching and angle

bending and r0 and θ0 are the equilibrium values. The torsional potential includes two

contributions: the improper torsional potential, Ui−tors and the proper torsional potential,

Up−tors. The latter has the following form:

Up−tors =
∑

proper

Kφ[1 + cos(nφ− γ)] (3.8)

where φ is the dihedral angle formed by four atoms linked through three adjacent covalent

bonds, Kφ is the force constant, n accounts for the periodicity of the torsional potential
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and γ is a phase factor. The improper torsions typically account for out-of-plane bending

motions and may have a harmonic functional form

Ui−tors =
∑

improper

Kζ(ζ − ζ0)
2, (3.9)

where ζ is the angle indicating the deviation of a covalent bond from the plane defined by

three atoms (e.g., in benzene, the angle formed by the CH bond with respect to the plane

formed by the carbon atoms in the frame C-CH-C). Kζ and ζ0 are the force constant and

the equilibrium value of the angle, respectively.

In Eq. 3.5, the term U14 represents the interaction between two atoms in positions

1-4, namely separated by three consecutive covalent bonds. This interaction consists of an

electrostatic and a Lennard-Jones term properly scaled down to account for the overlap

of the electronic densities of the two atoms. In general, the scaling factors depend on the

force field. In present force field, U14 is

U14 = 0.8333 U el
14 + 0.5 U lj

14, (3.10)

where U el
14 and U lj

14 are the standard electrostatic and Lennard-Jones energies.

The electrostatic energy depends critically on the net charges assigned to the atoms.

As prescribed by the GLYCAM force field [26], the charges on the β-CD are determined

by means of an ElectroStatic Potential (ESP) fit. In short, the ESP approach is based

on the fit of the potential, computed ab initio on a grid around the molecule, through a

distribution of point charges located on the atomic nuclei. The ab initio calculation of the

potential has been performed using the density functional theory at the B3LYP/6-31G*

level, after a structural optimization carried out with the same level of theory. The same

procedure has been employed to compute the atomic charges of benzene, naphthalene

and anthracene. The TIP3P model [50] has been adopted for the water molecules. The

atomic charges of benzene, naphthalene and anthracene are reported in Tables 3.1, 3.2

and 3.3, respectively.
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Table 3.1: Charges for benzene.

C -0.130521

H 0.130521

Table 3.2: Charges for naphtalene

C1 -0.300257 C2 -0.137388 C3 0.229439

H1 0.174399 H2 0.148526

Table 3.3: Charges for anthracene

C1 -0.266416 C2 -0.123133 C4 -0.343480

H1 0.1635645 H2 0.142433 H4 0.181745

C3 0.1628695

3.2 System and operative simulation schemes

The initial structure of the complex formed by benzene and β-CD has been taken

from the PDB file 2Y4S [51]. The initial structures of the complexes having naphthalene

and anthracene as ligands have been built by means of a molecular modelling program

(Avogadro [52]), taking β-CD from the PDB file and the ligands from the database of

the Avogadro program. Specifically, the ligands were in turn dragged manually into the

β-CD cavity and then the structure of the complex has been partially optimized (through

an empirical force field) to avoid large stress in the initial geometries. After obtaining

the structures of the complexes, water molecules were introduced in a cubic box of 40

Å side-length in random positions, taking the complex in the center of the box. The

number of water molecules for the various simulations is reported below. As stated above
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thermodynamic conditions for all simulations correspond to a pressure of 1 atm and a

temperature of 298 K.

As previously discussed (see Sec. 2.3), the paradigm adopted here to evaluate the

binding affinity between β-CD and aromatic compounds (benzene, naphthalene and an-

thracene) is based on the distance r between the centers of mass of ligand and receptor.

The basic relationships are Eqs. 2.50 and 2.61. In these equations, quantities appear that

require to carry out different types of simulations. These simulations are described below.

1. Equilibrium MD simulations of the solvated (fully coupled) ligand-receptor complex

without using constraints aimed at computing ρ(r′) (sse Eq. 2.61). These simula-

tions are also used to determine r′ through the evaluation of the PMF of the system

as a function of the distance r (details are given in Sec. 4.2.2). The initial structures

of the solvated complexes are determined as described in Sec. 3.1. The systems con-

sist of a ligand molecule, a β-CD molecule and 922 water molecules. The simulation

setups are very similar for the systems containing naphthalene and anthracene. To

an equilibration run of about 6 ns, a production run of 54 ns follows. In the case of

the complex formed by benzene, after a few hundred ps of an equilibrium simulation,

we observed an unbinding event. Thus, in order to keep the β-CD-benzene complex

in the bounded state, as required for the calculation of ρ(r′), an umbrella sampling

simulation has been performed, enforcing a restraining potential Uus(r) = kusr
2 on

the coordinate r. In the potential energy function Uus(r), the force constant kus

is 0.2 kcal mol−1 Å−2. Canonical averages have been computed using the proper

reweighting procedure [53]. Also in this case, equilibration takes about 6 ns, while

the production run is 54 ns long. In all simulations, the atomic coordinates needed

for the analysis have been saved every 120 fs.

2. Equilibrium MD simulations of the solvated (fully coupled) ligand-receptor complex

with constraint r = r′, to produce the initial microstates for the nonequilibrium

alchemical simulations (see point 3). The setup for these simulations is similar

to that described at the point 1, with the basic difference that, in this case, a

constraint is enforced to the distance r between the centers of mass of ligand and

receptor. This is accomplished by applying a stiff harmonic potential of the type

Uconstr(r) = k(r − r′)2, with force constant k = 1000 kcal mol−1 Å−2 and r′ = 1 Å.

The choice of r′ will be justified in Sec. 4.2.2. Clearly, in these simulations we do

not need to employ umbrella sampling, because the bounded state of the complex is
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preserved via Uconstr(r). An equilibration run of 600 ps and a production run of 600

ps have been carried out, by saving all the dynamical variables (atomic coordinates,

atomic velocities, thermostat and barostat variables) every 600 fs, for a total of 1000

microstates to be used in the nonequilibrium simulations described at the point 3.

3. Nonequilibrium alchemical simulations of the solvated ligand-receptor complex with

constaint r = r′ to compute the quantity φ(1, r′)−φ(0, r′) entering Eq. 2.61. Starting
from the microstates produced as described at the point 2, alchemical trajectories

(for a total of 1000) have been performed by varying the parameters η and λ (see

Eq. 2.62) to progressively decouple the ligand from its environment, by keeping the

ligand bounded to the receptor through the potential energy Uconstr(r) = k(r− r′)2

(see point 2). All nonequilibrium alchemical trajectories have been realized by

switching off the electrostatic interactions in the first half of the run, i.e. from 0

to τ/2, while the Lennard-Jones interactions have been switched off in the second

half of the run, i.e. from τ/2 to τ . Both alchemical parameters η and λ have

been varied linearly in time. At the end of the alchemical trajectories, the system

consists of the solvated receptor, with the ligand in gas phase and constrained to

the receptor via Uconstr(r). Four time schedules have been tested, differing to each

other in the simulation length: τ = 30, 60, 120, 240 ps. During each nonequilibrium

alchemical trajectory, the work performed on the system is computed by means

of Eq. 2.68. The 1000 work values are then exploited into Eq. 2.32 to evaluate

g(1)− g(0) ≡ φ(1, r′)− φ(0, r′).

4. Equilibrium simulations of the solvated (fully coupled) ligand to produce the initial

microstates for the nonequilibrium alchemical simulations (see point 5). Also in

this case, the simulation setup is similar to that described at the point 1. Here, the

system consists of a ligand molecule in a solvent consisting of 922 (benzene) or 920

(naphthalene and anthracene) water molecules. In all systems, equilibration and

production runs lasting 6 and 0.6 ns, respectively, have been carried out. During

the production run, the dynamical variables (atomic coordinates, atomic velocities,

thermostat and barostat variables) have been saved every 600 fs, for a total of 1000

microstates to be used in the nonequilibrium simulations described at the point 5.

5. Nonequilibrium alchemical simulations of the solvated ligand to compute the quan-

tity φ(1, ζL) − φ(0, ζL) entering Eq. 2.50. Starting from the microstates produced
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as described at the point 4 (ligand into solvent), alchemical trajectories (for a total

of 1000) have been performed by varying the parameters η and λ (see Eq. 2.62) to

progressively decouple the ligand from the solvent. All nonequilibrium alchemical

trajectories have been realized by switching off the electrostatic interactions in the

first half of the run, i.e. from 0 to τ/2, while the Lennard-Jones interactions have

been switched off in the second half of the run, i.e. from τ/2 to τ . Both alchemical

parameters η and λ have been varied linearly in time. At the end of the alchemical

trajectories, the system consists of neat solvent with the gas-phase ligand in the sim-

ulation box volume. Two time schedules, corresponding to different simulation time

lengths, have been tested: τ = 30, 240 ps. During each nonequilibrium trajectory,

the work performed on the system is computed by means of Eq. 2.68. The 1000 work

values are then exploited into Eq. 2.32 to evaluate g(1)− g(0) ≡ φ(1, ζL)−φ(0, ζL).

It is worth noting that the opposite of the quantity φ(1, ζL) − φ(0, ζL) corresponds

to the solvation free energy of the ligand.
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CHAPTER 4

Results and Calculations

Calculations of ∆G◦
RL for each complex have been split in the evaluation of two funda-

mental quantities, ∆G◦
1 (Eq. 2.61) and ∆G◦

2 (Eq. 2.50). The former contribution repre-

sents the decoupling free energy of the ligand from receptor and solvent in the bound-state

configuration of the complex, while the latter is the solvation free energy of the ligand.

The relation between these two quantities and ∆G◦
RL is expressed in Eq. 2.18. In Sec.

4.1, we discuss the calculations of ∆G◦
2, while ∆G◦

1 will be introduced in Sec. 4.2. The

latter quantity is in turn split in two contributions: the decoupling free energy of the

constrained bounded-state complex and the free energy contribution arising from ρ(r′)

(see Eq. 2.61 and related discussion).

4.1 Calculation of ∆G◦2

In the present section, we report on the ligand solvation free energy, which corresponds

to ∆G◦
2 (Eq. 2.50). In order to rationalize the results, we also analyse the works derived

from the alchemical trajectories.
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Benzene

To compute ∆G◦
2, we have realized two series of nonequilibrium alchemical trajectories,

according to the point 5 of Sec. 3.2. These two series of simulations are featured by

different time schedules (for the evolution of the alchemical parameters η and λ), differing

in the simulation time-length, which is 30 and 240 ps. From now on, we will identify

the calculations arising from the two series of simulations as fast and slow, respectively.

This choice is common to all the ligands under study. The basic quantity determined

during the nonequilibrium alchemical trajectories is the work performed on the system,

which is employed to compute ∆G◦
2 as described in Sec. 2.2.2. Interesting informations

about the reversibility and the accuracy of the calculation are gained from the work

distribution functions, which depend not only on the nature of the process, but also on

the time schedule adopted for the alchemical parameters and especially on the rate of

the alchemical trajectories. The work distribution functions obtained for the decoupling

process of benzene into water, realized with fast and slow simulations, are shown in Fig.

4.1. From the figure, it can be observed that the duration of the simulation affects the work
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Figure 4.1: Works distribution functions obtained from nonequilibrium sim-

ulations of benzene into water. The simulation time corresponding to the

curves is reported in the legend.

distributions significantly. These differences are typical of nonequilibrium simulations,

independing on the type of process under investigation. On one side, when the rate

of change of the control parameter is infinitely slow, the process is quasi-static, and

hence reversible, and the total work W performed on the system equals the free energy
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difference between the initial and final states, which is ∆G◦
2 in the present case. On the

other side, when the control parameters are switched at a finite rate, the work depends

on the microscopic initial conditions of the system, as well as on the fluctuations of the

uncontrolled degrees of freedom during the nonequilibrium simulation trajectory. Thus,

an amount of nonequilibrium trajectories can be carried out, each featured by a different

work. In any case, in agreement with the second law of thermodynamics, the average work

will exceed ∆G◦
2, namely 〈W 〉 > ∆G◦

2, even if single antidissipative trajectories (those for

which W < ∆G◦
2) can be observed with some probability [40]. The difference 〈W 〉−∆G◦

2

is the average dissipated work:

〈Wdiss〉 = 〈W 〉 −∆G◦
2. (4.1)

In summary, increasing the simulation time of the nonequilibrium trajectories, the process

becomes more reversible. In this way, the dispersion of the work obtained in a series of

trajectories decreases, and its distribution becomes narrower around an average value

progressively smaller, globally lowering the dissipation. In the limit of τ →∞, the work

distribution P (W ) takes the shape of a Dirac delta function, P (W ) = δ(W − ∆G◦
2),

centred into ∆G◦
2. This represents the reversible limit, according to which it is possible to

consider the transformation slow enough that the system has the possibility of sampling

canonically all the configurations. This is the reason why the work distribution function

arising from slow simulations has a trend more similar to a Gaussian function. Considering

the average work 〈W 〉, we find 〈Wslow〉 = 2.9 kJ/mol and 〈Wfast〉 = 10.5 kJ/mol. The

slow distribution appears narrower, with values approximately in the range -5 and 12

kJ/mol, while the fast distribution extends over a wider range of values, from ∼ −7
to ∼ 27 kJ/mol. The reason for such a marked difference is consistent with the average

dissipated work 〈Wdiss〉. To estimate this quantity it is necessary to evaluate the solvation

free energy gained from the two simulations, according to the JE (Eq. 2.32). Applying

the JE to the two sets of data of alchemical work, we obtain ∆G◦
2 = 2.7 kJ/mol for the

fast simulations and ∆G◦
2 = 1.6 kJ/mol for the slow simulations. According to Eq 4.1,

we find Wdiss = 7.9 kJ/mol and Wdiss = 1.3 kJ/mol for the fast and slow simulations,

respectively.

Concerning the solvation free energy, it is important to consider that trajectories

associated with low work values are those that mostly contribute to the exponential

average appearing in the JE (Eq. 2.32). These critical work values are located in the left

tail of the work distribution. If they are not sampled adequately, an overestimate of ∆G◦
2
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may arise. This is a known biasing problem in calculations based on the JE [54]. The

problem can be tackled in two ways: increasing the number of trajectories entering the

exponential average in the JE, or increasing the simulation time of the nonequilibrium

trajectories. It has been recognized that the latter approach is more efficient to improve

the accuracy of the calculation. Therefore, we may consider the ∆G◦
2 value obtained from

the slow simulations more accurate than that recovered from the fast simulations. This

choice will be extended to all systems and nonequilibrium simulations considered in this

study.

Naphthalene

The second investigated complex is β-CD and naphthalene. The work distribution

functions obtained from the nonequilibrium alchemical trajectories for the ligand-solvent

decoupling process are displayed in Fig. 4.2. Although both work distributions are local-
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Figure 4.2: Works distribution functions obtained from nonequilibrium sim-

ulations of naphthalene into water. The simulation time corresponding to the

curves is reported in the legend.

ized in different work intervals, they maintain the fundamental characteristics described

for the benzene system. In this case, the fast work distribution falls in the range (−4, 40)
kJ/mol, while the slow one in the interval (−2, 17) kJ/mol. Comparing these results with

those obtained for benzene, it emerges that, in the present case, the work distributions

are wider, while the average work is significantly larger. In fact, we find 〈Wfast〉 = 20.1
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kJ/mol and 〈Wslow〉 = 9.1 kJ/mol. The work increase is pronounced especially for the

fast simulation.

By applying the JE to the two series of work values, we obtain estimates of the solvation

free energy: ∆G◦
2 = 8.0 kJ/mol and ∆G◦

2 = 7.0 kJ/mol for the fast and slow simulations,

respectively. The difference between the two values is in line with our expectations and

with the data obtained on benzene, but quite moderate.

Observing the larger data dispersion in the present work distributions, we can expect

a greater dissipated work. This is confirmed by introducing the solvation free energies

reported above in the expression for the dissipated work (Eq. 4.1): 〈Wdiss〉 = 12, 1 kJ/mol

for the fast simulations and 〈Wdiss〉 = 2.1 kJ/mol for the slow simulations.

Anthracene

The last complex is formed by anthracene and β-CD. The work distribution functions

obtained from the nonequilibrium alchemical trajectories for the ligand-solvent decoupling

process are displayed in Fig. 4.3. It is possible to observe a first difference with respect to
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Figure 4.3: Works distribution functions obtained from nonequilibrium sim-

ulations of anthracene into water. The simulation time corresponding to the

curves is reported in the legend.

the previous functions. For anthracene, fast and slow work distributions fall in domains

of positive work values. Indeed, slow work distribution covers a range from 1 to 26

kJ/mol, while the fast work distribution from 5 to 50 kJ/mol. Anyway, apart from this

difference, the overall scenario does not change. The average work increases further to

41



Results and Calculations

30.1 kJ/mol for fast simulations and to 14.6 kJ/mol for slow simulations. The solvation

free energies for fast and slow simulations are ∆G◦
2 = 15.1 kJ/mol and ∆G◦

2 = 11.8

kJ/mol, respectively.

The regular trend of ∆G◦
2 with growing the ligand dimensions can be ascribed to a low-

ering of intermolecular energy. In fact, with increasing the size of the ligand, water-water

intermolecular energy contributions are lost without being recovered from the weaker in-

teractions between water and ligand (this is indeed a hydrophobic molecule). In terms of

dissipated work, we get: Wdiss = 2.9 kJ/mol (slow simulations) and Wdiss = 15.0 kJ/mol

(fast simulations).

In conclusion, the solvation free energies of the three ligands employed in the calcula-

tions of the ABFEs reported below are summarized in Table 4.1.

Table 4.1: Solvation free energies in kJ/mol.

benzene naphthalene anthracene

∆G◦
2 1.6 7.0 11.8

4.2 Calculation of ∆G◦1

In the present section, we will discuss the results obtained for ∆G◦
1, i.e. the decoupling

free energy of the ligand from receptor and solvent, expressed in Eq. 2.61. According to

this equation, the calculation is split in two parts. A part dealing with the estimation

of ∆φ = φ(1, r′) − φ(0, r′) through nonequilibrium alchemical simulations and a part

concerning the determination of ρ(r′) via equilibrium simulations.

4.2.1 Determination of ∆φ

Benzene

The contribution of ∆φ to ∆G◦
1 is computed according to the points 2 and 3 of Sec. 3.2.

Four different time-lengths have been considered to evaluate the degree of convergence

of the free energy estimates: τ = 30, 60, 120 and 240 ps. The quantity ∆φ has been

computed from the JE, obtaining the following values: ∆φ30 = 32.2 kJ/mol, ∆φ60 = 26.9

kJ/mol, ∆φ120 = 26.3 kJ/mol and ∆φ240 = 22.9 kJ/mol. A clear decrease of ∆φ is

observed from τ = 30 ps to τ = 240 ps. As in the case of ∆G◦
2, we will assume that
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simulations of 240 ps provide more accurate results, and for this reason, the final quantity

∆G◦
RL will be related to values obtained with that simulation time.

In Fig. 4.4, the work distributions of the decoupling process of benzene are displayed.

Also in this case, it is possible to get information about accuracy of the calculation and
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Figure 4.4: Works distribution functions of the complex with benzene ob-

tained through nonequilibrium alchemical simulation. The simulation time

related to each distribution is reported in the legend.

reversibility of the process from the shape and position of the work distributions. A clear

trend can be observed with increasing τ . Faster simulations are located at greater work

values, as it can be inferred quantitatively from the average work: 〈W 〉30 = 48.1 kJ/mol

, 〈W 〉60 = 42.4 kJ/mol , 〈W 〉120 = 36.9 kJ/mol and 〈W 〉240 = 32.3 kJ/mol. To the

light of the considerations reported in the previous section, such a trend is not surprising.

However, in this case, slower work distributions do not shrink significantly, even if an

asymmetric broadening of the left-side tail seems to become more pronounced for faster

simulations.

In particular, the ranges of covered works is: (25.6, 70.4) kJ/mol for τ = 30 ps,

(16, 60.8) kJ/mol for τ = 60 ps, (16, 57.6) kJ/mol for τ = 120 ps and (9.6, 51.2) kJ/mol

for τ = 240 ps. These distributions appear wider than those related to ∆G◦
2, and for this

reason we do expect larger values of the dissipated work Wdiss. In fact, from ∆φ and the

average work 〈W 〉, we obtain W 30
diss = 15.9 kJ/mol, W 60

diss = 15.5 kJ/mol, W 120
diss = 10.6
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kJ/mol and W 240
diss = 9.4 kJ/mol, where superscripts refer to τ .

Naphthalene

Also in the case of naphthalene four simulation times are considered. The quantity

∆φ has been computed from the JE, obtaining the following values: ∆φ30 = 48.5 kJ/mol,

∆φ60 = 44.1 kJ/mol, ∆φ120 = 41.1 kJ/mol, ∆φ240 = 37.0 kJ/mol. As usual, a decreasing

trend of ∆φ is observed with increasing τ .

The work distributions are shown in Fig. 4.5. These functions fall at greater work
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Figure 4.5: Works distribution functions of the complex with naphthalene

obtained through nonequilibrium alchemical simulation. The simulation time

related to each distribution is reported in the legend.

values with respect to those of benzene, and this fact is in agreement with the ligand

dimensions, as discussed in the previous section. In fact, 〈W 〉30 = 68.9 kJ/mol, 〈W 〉60 =
61.6 kJ/mol, 〈W 〉120 = 53.9 kJ/mol, 〈W 〉240 = 47.5 kJ/mol. For τ = 30 ps, the work

distribution ranges from 33.6 to 96.6 kJ/mol, for τ = 60 ps from 25.2 to 88.2 kJ/mol,

for τ = 120 ps from 25.2 to 79.8 kJ/mol and for τ = 240 ps from 21 to 67.2 kJ/mol.

These ranges show once again that the slower distributions are narrower, and the width

decreases with the increase of τ . Compared to the benzene case, work distributions of

naphthalene cover larger ranges, resulting broader; accordingly, we do expect larger values
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ofWdiss. From Eq. 4.1, we obtainW 30
diss = 20.4 kJ/mol, W 60

diss = 17.5 kJ/mol, W 120
diss = 12.8

kJ/mol, W 240
diss = 10.4 kJ/mol. These dissipations are slightly larger than those of benzene.

Anthracene

In the case of anthracene, no significant departures from the behavior observed for

benzene and naphthalene are observable. The values of ∆φ obtained for this system are

∆φ30 = 67.1 kJ/mol, ∆φ60 = 56.1 kJ/mol, ∆φ120 = 49.7 kJ/mol and ∆φ240 = 48.7

kJ/mol.

In Fig. 4.6 we report the work distributions for the complex composed by anthracene

and β-CD. Due to the ligand size, we expect irregularities as in the case of ∆G◦
2. For the
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Figure 4.6: Works distribution functions of the complex with anthracene

obtained through nonequilibrium alchemical simulation. The simulation time

related to each distribution is reported in the legend.

work distribution related to τ = 30 ps, the shape is very different from a Gaussian, but

also in the other distributions the symmetry is absent, and each distribution present a

sharp peak; so, the complex with anthracene results as the system that differs mostly from

the ideal behavior. Averages work values are the largest and their decrease is regular:

〈W 〉30 = 88.9 kJ/mol, 〈W 〉60 = 79.1 kJ/mol, 〈W 〉120 = 70.2 kJ/mol and 〈W 〉240 = 62.5

kJ/mol. In this case, the average dissipated work is W 30
diss = 21.8 kJ/mol, W 60

diss = 23.0

kJ/mol, W 120
diss = 20.5 kJ/mol and W 240

diss = 13.8 kJ/mol.
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In conclusion, in Table 4.2 we report the ∆φ values for the three systems.

Table 4.2: ∆φ in kJ/mol for τ=240 ps

benzene naphthalene anthracene

∆φ 22.9 37.0 48.7

4.2.2 Determination of the ρ(r′) contribution

Numerically, the quantity ρ(r′) (Eq. 2.59) is evaluated from equilibrium simulations of

the ligand-receptor complex in the bounded state, as described at the point 1 of Sec. 3.2.

The choice of r′ for a given complex, albeit arbitrary, depends upon the PMF computed

from the equilibrium simulation. In order to get a good statistical sampling, r′ should

correspond to highly probable configurations, namely it should fall in a domain where the

value of the PMF is low. Figures 4.7, 4.8 and 4.9 display the PMF of the three complexes

as a function of the distance between the centers of mass of ligand and receptor. The

corresponding radial distribution functions ρ(r), from which the PMF Φ(r) is evaluated

(through the relationship Φ(r) = −RT ln ρ(r), are also reported in the figures.
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Figure 4.7: Panel A: PMF for the complex with benzene, evaluated through

an equilibrium simulation. Panel B: radial distribution function, ρ(r), used to

compute the PMF.
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Figure 4.8: Panel A: PMF for the complex with naphthalene, evaluated

through an equilibrium simulation. Panel B: radial distribution function, ρ(r),

used to compute the PMF.
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Figure 4.9: Panel A: PMF for the complex with anthracene, evaluated

through an equilibrium simulation. Panel B: radial distribution function, ρ(r),

used to compute the PMF.

On the basis of the PMF trends, we opted for r′ = 1 Å. According to the previous

observations, it would be possible to choose a lower value for r′, corresponding to a region

of higher probability. However, values around 0 Å must be avoided to prevent numerical
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errors arising from the (too small) spherical shell volume employed in the calculation of

ρ(r). In this respect, it is worth noting that, according to the theory, the specific value

of r′ does not affect the estimate of ∆G◦
1.

Furthermore, from Eq. 2.59, we can see that ρ(r′) depends apparently on δr. Actually,

as also δp(r′) depends (linearly) on δr, the probability density ρ(r′) does not. In spite

of this theoretical outcome, from the numerical standpoint we may observe a certain

dependence of ρ(r′) upon the choice of δr. This has been verified for all complexes,

estimating ρ(r′) for various values of δr, specifically 0.01, 0.02, 0.05, 0.1 and 0.2 Å.

In Fig. 4.10, we report the quantity RT ln ρ(r′)
C◦

as a function of δr for the three

complexes. This energy term contributes to ∆G◦
1 as established from Eq. 2.61. The nearly

constant trend of RT ln ρ(r′)
C◦

is very satisfactory, confirming the substantial independence

of the free energy estimates on δr. The value that we have choosen to estimate ∆G◦
1

is δr = 0.1 Å. With such a value, we have obtained RT ln ρ(r′)
C◦

= 9.4, 10.0, 10.5 kJ/mol

for benzene, naphthalene and anthracene, respectively. These results are summarized in

Table 4.3. According to Eq. 2.61, we can recast the data of Tables 4.2 and 4.3 into ∆G◦
1,

benzene naphthalene anthracene

RT ln ρ(r′)
C◦

9.4 10.0 10.5

Table 4.3: RT ln ρ(r′)
C◦ in kJ/mol computed with δr = 0.1 Å

whose estimates are reported in Table 4.4 for the three complexes.

benzene naphthalene anthracene

∆G◦
1 13.5 27.0 38.2

Table 4.4: ∆G◦
1 in kJ/mol for the three complexes.

4.3 Calculation of the absolute binding free energy:

∆G◦RL

Estimation of ∆G◦
2 and ∆G◦

1 allows us to determine the values of ∆G◦
RL related to

the three complexes, as reported in Eq. 2.18. Thus, exploiting the data reported in the
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Figure 4.10: RT ln ρ(r′)
C◦ as a function of δr for the complexes with benzene,

naphthalene ad anthracene represented in panels A, B and C, respectively.

Those behaviours confirm the limited dependence of RT ln ρ(r′)
C◦ on the choice

of the resolution.

Tables 4.4 and 4.1, we obtain:

benzene : ∆G◦
RL = 1.6 kJ/mol− 13.5 kJ/mol = −11.9 kJ/mol (4.2)

naphthalene : ∆G◦
RL = 7.0 kJ/mol− 27.0 kJ/mol = −20.0 kJ/mol (4.3)
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anthracene : ∆G◦
RL = 11.8 kJ/mol− 38.2 kJ/mol = −26.4 kJ/mol (4.4)

This is the central result of this study. To evaluate the accuracy of the calculations, we

compare the computed ABFEs to the experimental counterparts, reported in Ref. [55].

The data are summarized in Table 4.5. We note that all the computed ABFEs overes-

Ligand benzene naphthalene anthracene

Experiment -12.7 -16.2 -18.9

Calculation -11.9 -20.0 -26.4

δ∆G◦
RL 0.8 3.8 7.5

Table 4.5: Absolute binding free energies for the complex ligand-β-CD ex-

pressed in kJ/mol

timate the experimental data by an amount, which is decreasing in the order benzene,

naphthalene, anthracene: δ∆G◦
RL = 0.8, 3.8, 7.5 kJ/mol. These data are also reported in

Table 4.5. These features will be discussed in the next section.
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CHAPTER 5

Discussion and Conclusions

The aim of the present study is the determination, via computer simulations, of the

ABFE of complexes formed by β-CD with three aromatic compounds, specifically, ben-

zene, naphthalene and anthracene. Among the variety of methods devised for ABFE

calculations, we adopted MD simulations with full atomistic details adapted to real-

ize alchemical transformations within the framework of the so-called “double decoupling

method” [1].

Elements of interest and innovation are related to the theoretical strategy of supple-

menting alchemical transformations with a scheme based on the constrained dynamics of

relevant coordinates of the system, devised to distinguish between the bound and unbound

states of the complex. In our case, such a coordinate is the distance between the centers

of mass of β-CD and ligand. Furthermore, the alchemical transformations are carried out

by employing nonequilibrium simulations with alchemical parameters (regulating the in-

termolecular interactions between ligand and environment) as driving control parameters.

Decoupling free energies are computed according to well-known nonequilibrium work the-

orems, such as the Jarzynski equality [40]. Our approach is alternative to computational

schemes based on either equilibrium MD simulations [1, 56, 57] or nonequilibrium MD

simulations without constrained dynamics [58, 59].

The results obtained using this method, summarized in Table 4.5, are very satisfac-
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tory, especially for benzene. The reason for the growing overestimate (with respect to

experiments) of the ABFE, with going from benzene to naphthalene and anthracene (see

Table 4.5), can be ascribed to the specific nature of the calculation of the decoupling free

energies, performed via Jarzynski equality. It is known that the Jarzynski equality suffers

a statistical bias for a finite number of samples (work values), which can be very large [54].

Such a bias is more and more important when the nonequilibrium process becomes more

irreversible, or equivalently, when the alchemical trajectories become more dissipative.

This is in agreement with our analysis of the work distribution functions. For a given rate

(i.e., simulation time) of the nonequilibrium alchemical trajectories, dissipation increases,

in average, when the molecule undergoing decoupling, which is the ligand in our case,

grows in size. This is ultimately due to the fact that larger molecules introduce greater

perturbations during the alchemical process.

The drawback arising from bias could be tackled making the trajectories more re-

versible, namely adopting longer simulation times. This is indeed confirmed by our anal-

ysis. Thus, we do expect that, increasing the simulation time beyond the longest one used

in this study (240 ps), an improvement of the calculated estimates might occur. However,

we must acknowledge that other sources of error, first of all the force field, may also affect

the ABFE estimates.

Nonetheless, already with the current simulation time (240 ps), the differences between

calculated and experimental ABFEs are quite low (less than 8 kJ/mol) and in line with the

errors observed with other methodologies. Thus, in conclusion, the results of the present

investigation are satisfactory for two reasons at least: the verification of the developed

methodology and the validation of the force field employed for the molecules under study.
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certo che farò tesoro di tutto ciò che mi ha trasmesso e insegnato.

Non posso far a meno di ringraziare il Prof. Gianni Cardini e il Dott. Marco Pagliai,

per la loro costante presenza e collaborazione, per gli spunti che molto spesso mi hanno

aiutato e motivato.

Grazie di cuore agli altri tesisti e tirocinanti, coloro che hanno contribuito a rendere

nostra quella stanza, che mi hanno permesso di trasformare in piacevole e stimolante un

periodo impegnativo come quello che abbiamo affrontato insieme.

Come potrei non nominare, infine, il Relatore Prof. Riccardo Chelli e il Correlatore

Prof. Piero Procacci. Grazie alla loro determinazione e preparazione ho potuto vivere in

prima persona un contesto fino ad’ora a me sconosciuto. L’impegno e l’entusiasmo con

cui mi hanno guidato saranno per me fonte di ispirazione e punti di partenza.

58


